

Linux perf_events updates

Stephane Eranian Scalable Tools Workshop 2019 Lake Tahoe, CA

Agenda

- Quick updates on perf_events
- Intel IceLake support

SKX90 Erratum

- Intel Skylake (all models) with RTM enabled may lose access generic counter 3
 - Content of EVTSEL and counter for is unreliable
 - Counter 3 may not be available **regardless** of Hyperthreading mode
- Two options:
 - PMU priority: all RTM transactions abort, PMC3 available for monitoring
 - RTM priority: RTM transactions operate normally, PMC3 unavailable for monitoring
 - $\circ \quad \mbox{Controlled by new MSR } {\tt TSX_FORCE_ABORT}$
- Linux support (v5.2): TFA
 - New sysctl /sys/devices/cpu/allow_tsx_force_abort
 - PMU priority: echo 1 > /sys/devices/cpu/allow_tsx_force_abort (boot default)
 - RTM priority: echo 0 > /sys/devices/cpu/allow_tsx_force_abort
 - Guarantee all events are out of counter 3 on return from echo

SK90 Erratum effects

1. with HT enabled and RTM priority, only 3 generic counters

\$ echo 1 >/sys/devices/cpu/allow_tsx_force_abort

	S perf stat -a -C 0	no-merge -I 1000	-e branches,branches,branches,branches sleep 4
÷	time time	counts uni	t events
	1.000543512	3,181,592,253	branches
	1.000543512	3,182,862,453	branches
	1.000543512	3,182,864,125	branches
	1.000543512	3,182,865,320	branches

\$ echo 0 >/sys/devices/cpu/allow_tsx_force_abort

\$ perf stat -a -C 0 --no-merge -I 1000 -e branches,branches,branches,branches sleep 4
time counts unit events
1.000549218 3,173,776,230 branches (75.00%)
1.000549218 3,174,894,652 branches (75.01%)

³/₄ counters

available

Group of 4 generic counter events will fail:

\$ perf stat -a -C 0 --no-merge -I 1000 -e `{branches,branches,branches}'

1.000549218 3,173,908,733 branches (**75.02**%)

1.000549218 3,174,442,578 branches (**74.96**%)

Intel CascadeLake : Persistent Memory Module support

- core/uncore PMUs identical to SkylakeX
- PMU support for Persistent Memory Module (PMM) AppDirect or Memory Mode
 - Core PMU: mem_load_retired.local_pmm, mem_load_retired.remote_pmm
 - Core PMU: offcore_response
 - \circ Lack of writeback coverage
 - Uncore PMU IMC: unc_m_pmm_rpq_occupancy.all, unc_m_pmm_rpq_inserts, unc_m_pmm_cmd1.*, unc_m_pmm_wpq_occupancy.all, unc_m_pmm_wpq_inserts
 - Uncore PMU M2M: unc_m2m_imc_reads.to_pmm, unc_m2m_imc_writes.to_pmm
 - Possible to measure PMM read/write bandwidth and access latencies for reads/writes

Intel Icelake support

- Architectural Perfmon v5:
 - Anythread deprecated
 - Enumeration of fixed counters
- PERF_METRICS
- PEBS v4

Intel Icelake PMU: Anythread bit recap

- Per-counter filter (incl. fixed counters)
- Increment counter when event occurs in either thread

```
$ perf stat -e cpu/event=0x3c, any/, cpu/event=0x3c/ -I 1000 -a -C 10,66 (CPU10, CPU66 siblings)
# time CPU counts unit events
1.000097760 CPU10 83,156,388 cpu/event=0x3c, any/u
1.000097760 CPU66 83,156,367 cpu/event=0x3c, any/u
1.000097760 CPU10 43,494,158 cycles:u
1.000097760 CPU66 39,665,495 cycles:u
```

- Removed over concerns of security and complexity
 - Can be used to snoop on sibling which may be running program from distinct user

Intel Icelake PMU: Anythread bit alternative

- New CPU CLK UNHALTED.DISTRIBUTED core event
 - Increment by 1 in each cycle where **only** the current thread executes uops
 - Alternative only for cycles
- Example: ping-pong between 2 threads sharing same core

\$ perf stat -e cpu/event=0xec,umask=0x2,name=cycles_distributed/,cycles pong

CYCLE	1	2	3	4	Total	
THREAD0 executes	1		1		2	
THREAD1 executes		1		1	2	
THREAD0 cycles:any	1	1	1	1	4	4/2 = 2
THREAD1 cycles:any	1	1	1	1	4	

CYCLE	1	2	3	4	Total
THREAD0 Executes	1		1		2
THREAD1 Executes		✓		✓	2
THREAD0 cycles_distributed	1		1		2
THREAD1 cycles_distributed		1		1	2

Intel IceLake core PMU: more counters!

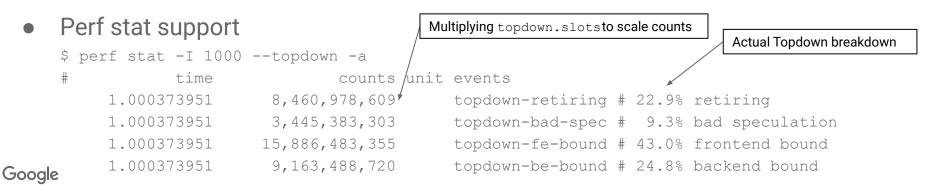
	Skylake	Icelake
Generic counters per CPU HT on	4	8
Generic counters per CPU HT off	8	8
Fixed counters	3	4
Fixed metrics counters	0	1

- Largest generic counter increase since Core 2
- More event constraints: many events can only be counted on lower 4 counters
- New kind of fixed counters: precomputed metrics instead of raw event counts
- More counters = less multiplexing = less overhead
- More counters = more state = more expensive ctxsw, but RDPMC latency is improved 4x (15 cycles)

Intel Icelake PMU: PERF METRICS topdown counter

- New fixed counter: PERF_METRICS (fixed ctr4)
- Topdown level 1 (unit: % of issue slots):
 - frontend bound, backend bound, bad speculation, retiring
- Fixed counter 4: PERF_METRICS
 - 4x 8-bit fields interpreted as fraction of 255
 - Example: frontend bound (bits[16:23])=120 => 120/255 = 47%
 - Computes 4 topdown level 1 metrics since last reset

Intel IceLake PMU: PERF METRICS


- **Pros of** PERF_METRICS:
 - 1 counter read = 4 pre-computed metrics vs. Skylake needed 5 events = 5 counter reads
 - Computes metrics per-thread : huge improvement vs. Skylake which is per-core only
 - Topdown can be measured with up to 8 + 3 other events (HT on)
- **Cons of** PERF_METRICS:
 - Accuracy: 1 / 255 = ±0.4%
 - Needs reset on read to understand point of reference
 - Must be reset regularly to maintain precision
 - No sampling support
 - Linux support is not trivial due to single counter multiple metrics, not incrementing metrics

Intel IceLake PMU: TOPDOWN.SLOTS event

- New fixed counter: TOPDOWN.SLOTS (fixed ctr3)
 - Architectural event enumerated by CPUID 0xa leaf function
 - Supported on generic counters as event 0x01a4
- Counts number of available issue slots per logical CPU
 - Counts unhalted_cores_cycles * machine_width
 - Distributes slots between unhalted logical CPU (HT threads)

Intel Icelake PMU: PERF_METRICS Linux support

- Intel (Andi Kleen, Kan Liang) LKML patches from 07/24/2019 under review
- Exports new pseudo-events (/sys/devices/cpu/events)
 - topdown-retiring, topdown-fe-bound, topdown-be-bound, topdown-bad-spec
 - Event code 0x00, umask=0x10, 0x11, 0x12, 0x13
 - RDPMC supported though tricky when computing deltas
- Exported as individual pseudo events but must be in same event group
 - Cause single RDPMC in kernel and automatic reset on read

Intel Icelake PMU: PEBS recap

- **Processor** (used to be Precise!) Event-Based Sampling
 - Hardware buffer in virtual memory to save samples for limited set of at-retirement events
 - PMU interrupt only when buffer threshold reached
 - Record machine state at each sample
 - Provide precise IP pointing to instruction causing event, i.e., skidless
- Pros of PEBS
 - Precise IP
 - Lower sampling overhead: 1 PMU Intr for N samples (Linux: 341 samples/PMU intr)
 - Sampling data addresses for load/store events
- Cons of PEBS
 - Constraint on sampling mode: cannot use Linux frequency mode or certain PERF_SAMPLE_*
 - Not all events supported
 - Does not virtualize
 - PEBS record fixed size (24 x 8 = **192 bytes**). Too big for most measurements, wasted space+cycles

Intel Icelake PMU: Extended PEBS support

- Adds Extended PEBS
 - All counters support PEBS, including Fixed counters 0-3 (Skylake only generic counters 0-3)
 - All events can generate PEBS records
 - Only events supporting precise sampling will generate precise IP, others will include variable skid
- Pros of Extended PEBS
 - Amortize cost of sampling with PEBS buffer for ALL events
 - For non-precise event, skid on IP likely smaller (better) than without PEBS
 - Sample on more PEBS events simultaneously
- Cons of Extended PEBS
 - Does not make all events precise
- Linux support in v5.2
 - Nothing specific to do in tools, can just enable with precise_ip > 0 on **any** events

\$ perf stat -e cpu/event=0x08,umask=0x2,name=dtlb_load_misses_walk_completed_4k/pp
Google

Intel Icelake PMU: Adaptive PEBS support

- Adds Adaptive PEBS
 - PEBS record are configurable by groups of fields
 - PEBS can record full LBR
 - PEBS can record XMM registers

• PEBS groups

Name	Required	Regs	Size (bytes)	Minimal Size (bytes)	Cumulative Size (bytes)
Basic	Yes	eventing_IP, TSC, OVFL, REC FMT	4 * 8 = 32	32	32
Memory	No	Data addr, Idlat, Iatency, tsx_info	4 * 8 = 32	32 + 32 = 64	64
GPR	No	EFLAGS, RIP, EAX, EBX, ECX, EDX, RDI, RSI, R8-R15	18 * 8 = 144	32 + 144 = 176	240
XMM	No	XMM0-XMM15	16 * 8 = 128	32 + 128 = 160	400
LBR	No	32x LBR_TO/LBR_FROM/LBR_INFO	32 * 24 = 768	32 + 768 = 800	1200

6x less than Skylake for most measurements

Intel Icelake PMU: Adaptive PEBS Linux support

- Supported in Linux v5.2
- Kernel automatically selects field groups
 - Based on attr.sample_type and attr.regs_smpl_usr/intr

Perf command line	PEBS field groups	PEBS record size (bytes)
perf record -e cpu/event=0xd0,umask=0x81/pp	basic	32
perf record -d -e cpu/event=0xd0,umask=0x81/pp	Basic + memory	64
perf record -intr-regs=AX -e cpu/event=0xd0,umask=0x81/pp	Basic + GPR	176
perf record -b -e cpu/event=0xd0,umask=0x81/pp	Basic + LBR	800
perf record -intr-regs=XMM0-XMM7 -e cpu/event=0xd0,umask=0x81/pp	Basic + XMM	128
perf record -b -dintr-regs=DI,SI -e cpu/event=0xd0,umask=0x81/pp	Basic + GPR + Memory + LBR	976

Google perf_events current challenges

- **Scalability** of the interface and implementation is the biggest challenge
 - Worried about single machine scalability
- Machines are getting bigger with 200+ CPUs
- perf_events model: individual event abstraction
 - 1 file descriptor per event, 1 event instance per CPU (system-wide mode)
 - Cgroup mode: 1 event instance per cgroup per CPU
- Examples on 256 CPU machine and 200 cgroups:

\$ perf stat -a -e a,b,c,d,e,f : 6 * 256 = 1536 fds

\$ perf stat -a a,b,c,d,e,f -G grp0,grp2,grp3, ...,grp199:6*256*200=307,200 fds,51,200 events/CPU

- Cost of multiplexing
- Google is working on improving scalability: patches posted on LKML

Conclusion

- Intel Icelake PMU packs the most PMU improvements
- PEBS improvements allows lowering sampling cost by a lot
- PERF_METRICS introduce a new counter concept here to stay

References

• Intel SDM Vol 3b May 2019 edition